
- 1 -

OpendTect Programmer's
Manual - 7.0

Copyright © 2002-2024 by dGB Beheer B.V.

All rights reserved. No part of this publication may be reproduced and/or published
by print, photo print, microfilm or any other means without the written consent of
dGB Beheer B.V.

Under the terms and conditions of any of the following three license types, license
holders are permitted to make hard copies for internal use:

l GNUGPL
l Commercial License
l Academic License

- 2 -

Table of Contents
OpendTect Programmer's Manual - 7.0 1

Table of Contents 2

1 Preface 6

1.1 About this Manual 6

1.2 Release Notes 7

1.3 About OpendTect 8

1.4 Copyright 9

1.5 Acknowledgements 10

2 Build a standalone plugin 11

2.1 Introduction to building a stand alone plugin 11

2.2 Setting up the Environment 12

2.3 Building the Tutorial Plugin 15

2.4 Debugging your plugin 17

2.5 Creating the Help documentation 18

2.6 Installation and auto-loading 20

2.6.1 Preparing a plugin for auto-load 20

2.6.2 Installing plugins for auto-load 21

2.6.3 Using .alo files 22

2.7 Distributing your plugin 23

3 The Tutorial Plugin 26

- 3 -

3.1 Introduction 26

3.2 uiTut plugin 27

3.3 Tut plugin 29

3.4 SeisTools 30

3.5 HorTool 33

3.6 The Tutorial Attribute 35

3.7 Steering 36

4 Build OpendTect from source 43

4.1 Introduction 43

4.2 Setting up the environment 44

OpendTect source code 44

CMake 44

Qt 44

OSG 45

Proj (optional) 45

Sqlite (optional) 45

HDF5 (optional) 45

4.3 Building OpendTect 46

Windows 46

Linux 46

5 Contributing to the Source Code 48

5.1 Introduction 48

- 4 -

5.2 Design principles 50

5.3 Isolation of external services 51

5.4 Modules 52

5.4.1 Introduction 52

5.4.2 The separation 52

5.4.3 Real Work modules 53

5.4.4 UI modules 54

5.5 Contributing 55

6 Principles and best practices in OpendTect coding 56

6.1 Introduction 56

6.2 Requirements 57

6.2.1 Nice and neat 57

6.2.2 Uniform 59

6.2.3 Simple and Easy 59

6.3 Explicit Rules 60

6.3.1 Introduction 60

6.3.2 OO and general rules 61

6.3.3 C++ rules 62

6.4 Semantical/typographical rules 64

6.5 Layout 65

6.6 Adapting code 69

7 Class Documentation and other resources 70

- 5 -

Glossary 71

- 6 -

1 Preface
1.1 About this Manual
This is the manual for developers wanting to use, change or contribute to the source
code of OpendTect. It describes all necessary steps taken to download and compile
OpendTect from source on Windows, Linux and Mac OS. There is also a separate
section for those who want to develop plugins, as it is not necessary to build
OpendTect completely to effectively develop and debug your own plugin.

This document was written using MadCap Flare. Two versions are published: an
html manual for online use and a pdf version for printing. Both the html and pdf
manual can be separately downloaded from the documentation page of the dGB
website.

While every precaution has been taken in the preparation of this manual, it is pos-
sible that last minute changes to the user interface are not reflected in the manual,
or are not described accurately. Please help us improve future editions by reporting
any errors, inaccuracies, bugs, misleading or confusing statements you encounter.

Other Manuals:

l User documentation - step by step explanation of all functionality in OpendTect
l How-To Instructions - this documentation describes How-To apply the software effect-
ively.

l Training Manual - comes with a 3D data set for self-training. Download from the doc-
umentation page

l Administrator's Documentation.

- 7 -

1.2 Release Notes
This is the programmer documentation for release OpendTect v7.0- an open source
post-processing, and seismic interpretation system created by dGB.

OpendTect is released via the internet. Users can download the software from the
OpendTect website. It will run without license protection.

OpendTect v7.0 is released under a triple licensing strategy:

l Under the GNU GPL license.
l Under the OpendTect Pro license.
l Under an Academic license.

Under the GNU GPL license OpendTect is completely free-of-charge, including for
commercial use.

The OpendTect Pro license gives commercial users access to OpendTect Pro, the
commercial version of OpendTect. OpendTect Pro offers extra functionality and
allows commercial users to extend the system with additional (closed source) com-
mercial plugins that can either be purchased or leased. The commercial parts of
OpendTect are protected by FlexNet license managing software. To obtain a
license key for OpendTect Pro and the plugins please contact dGB at info@dgbe-
s.com.

Under the Academic license agreement universities can get free licenses for
OpendTect Pro and commercial plugins for R&D and educational purposes.

OpendTect is currently supported on the following platforms:

l Linux (64bit)
l Windows 10 and 11 (64bit)
l macOS 12 (Monterey), 13 (Ventura) and 14 (Sonoma)

- 8 -

1.3 About OpendTect
OpendTect is a free, open source seismic interpretation system and software devel-
opment platform. The system supports all tools needed for visualizing, analyzing
and interpreting 2D, 3D and 4D seismic and Geo_Radar data. The software is writ-
ten in C++ and the same codebase compiles and runs on Windows, macOS and
Linux. It also has a mature plugin programming interface that allows third parties to
develop plugins to add functionality to the system without touching the OpendTect
source code. A binary installer for OpendTect can be downloaded from the dGB
download page.

This source code is released under the GPLv3 or higher license. Commercial and
Academic licenses are offered by dGB Earth Sciences for OpendTect Pro, an exten-
sion of OpendTect that adds special functions for professional users and the poten-
tial to rent or purchase commercial plugins offering access to unique seismic
interpretation workflows. The differences in functionality of the open source
OpendTect, commercial OpendTect Pro and commercial plugins is compared here.

OpendTect is a flexible and powerful R&D software platform that you can extend for
seismic data analysis. dGB Earth Sciences is also available to undertake industry
funded (single or multi- client) projects to enhance OpendTect itself or create
advanced plugin functionality.

OpendTect is used worldwide by thousands of open source users, thousands of aca-
demic users and hundreds of commercial users.

- 9 -

1.4 Copyright
The information contained in this manual and the accompanying software programs
are copyrighted and all rights reserved by dGB Beheer BV, hereinafter dGB. dGB
reserves the right to make periodic modifications to this product without obligation to
notify any person or entity of such revision. Copying, duplicating, selling, or oth-
erwise distributing any part of this product without any prior consent of an author-
ized representative of dGB is prohibited.

OpendTect license holders are permitted to print and copy this manual for internal
use.

- 10 -

1.5 Acknowledgements
The OpendTect system is developed around concepts and ideas originating from a
long-term collaboration between dGB and Statoil. Most of the system was and is
developed through sponsored projects. We are indebted to all past, present and
future sponsors. To name a few:

l Addax
l ARKCLS
l BGGroup
l Chevron
l ConocoPhillips
l Detnor
l DNO
l ENI
l GDF Suez
l Geokinetics
l JGI
l Marathon Oil
l MOL
l OMV
l RocOil
l Saudi Aramco
l Shell
l Statoil
l Talisman
l Tetrale
l The Dutch Government
l Thrust Belt Imaging
l Wintershall
l Woodside

- 11 -

2 Build a standalone plugin
2.1 Introduction to building a stand alone
plugin
Making your own software within OpendTect is in principle pretty easy. You could
change the software by modifying existing classes and functions, and adding your
own stuff to the libs. The advantage is total control. The problem with this approach,
however, is that you have to keep the OpendTect sources in sync with new
releases. Furthermore, if you cannot convince the opendtect.org people to also
make those changes, OpendTect users may not be happy with your work.

An easy way to overcome this is to make your own plugins. Plugins make use of all
the facilities of OpendTect but are loaded at run- time and can therefore be
developed in a completely independent way. If you then find things that can't be
done without modifying the OpendTect environment, it should be much easier to
convince the opendtect.org people to take over or even implement those things
themselves. One thing you cannot do, is use another compiler than gcc/g++ on
Linux/macOS or VC++ on Windows. OpendTect is built with it, if you want to use
another compiler (why?) you'll have to make all libs and supporting libs (Qt, OpenS-
ceneGraph) yourself. The make itself should be pretty easy to get started, but there
will probably be some porting to do, too.

Requirements:

All platforms:

OpendTect

CMake

Windows:

Visual Studio 2022 or 2019 (Community Edition is sufficient)

https://dgbes.com/download
https://cmake.org/download/
https://visualstudio.microsoft.com/downloads/

- 12 -

2.2 Setting up the Environment
For setting up OpendTect to be able to build and test your own plugins; download
the installation manager at the OpendTect download page or go to Utilities
> Installation > Update in the main menu if OpendTect is already installed.

This will open the OpendTect Installation Manager. In the installation manager
make sure that besides all plugins and packages you want to have available in
OpendTect, the Developer's Package option in Development Tools is checked.

https://dgbes.com/download

- 13 -

Proceed to download and install the required files. After this you can run
OpendTect.

To create the directory where the source code of your plugin will be, go to: Utilities >
Plugin Development in the main menu.

And create the development folder (for example ODWork) at a convenient location.
It can be any location, but not the OpendTect installation folder itself, as this
would create conflicts.

- 14 -

This folder contains example code (Tut Plugin) to easily start developing.

- 15 -

2.3 Building the Tutorial Plugin
After creating the folder, run CMake and select the WORK directory you just cre-
ated, put the location in both the "source" and "output" fields. Then press the 'Con-
figure' button

Select Visual Studio 15 2017 as the generator and choose x64 as the platform. Click
Finish.

The first configuration will probably fail, do not worry, click ok.

- 16 -

And set OpendTect_DIR to point to your installed OpendTect directory, after this
you can click Generate to create the necessary project files.

If successful you will see the created files in your WORK folder, and can open the
OpendTect_Tutorial_Plugin.sln file to run Visual Studio.

For a more in depth view of the code in the tutorial plugin, please review Chapter 3
of this manual, this chapter will continue with ways to debug and install a plugin.

- 17 -

2.4 Debugging your plugin
Open the plugin solution in Visual Studio, and right-click on the solution item, and
open the solution properties window. Here you can specify the debug source file loc-
ation, so in your case add the location of the OpendTect source files which are
installed by the installation manager, i.e. C:\Program Files\OpendTect\7.0. Now
select the "od_main" project which is a launcher project to launch od_main debug
executable that comes with the developers package. Right click on this project and
set to "Set as startup project". When you press F5 for debugging this project will be
started. Ignore if you see any Visual studio warnings. The OpendTect main pro-
gram, od_main.exe will be launched.

From Utilities-Installation-Plugins OpendTect try to load your plugin by browsing to
the WORK(D:\WORK)\bin\win64\Debug folder. To debug something, just set a
break point in the code. So when the control comes to the break-point it will stop
there and you can debug your code. You can also browse into OpendTect source
files if you have specified the OpendTect source file location is the solution prop-
erties as mentioned above.

- 18 -

2.5 Creating the Help documentation
Like any other commercial application, our plugin also needs a help document
which a user can see by clicking on a button in the user interface. The OpendTect
help system is quite flexible and allows a plugin to define its own way of showing
help information. But in most cases, all you want is to open an HTML file either
stored locally or on the web. For this purpose, we have a class called Sim-
pleHelpProvider that provides a key-link based help system. The idea is to have a
common base URL (can be a local file path) and then append links for individual
help documents to this base URL, based on keys.

So, you need to define your own HelpProvider class as a subclass of Sim-
pleHelpProvider and initialize it when the plugin loads. A good example is the
TutHelpProvider defined in uitutpi.cc:

class TutHelpProvider : public SimpleHelpProvider
{
public:
TutHelpProvider(const char* baseurl, const char* linkfnm)

: SimpleHelpProvider(baseurl,linkfnm)
{}

static void initClass()
{
 HelpProvider::factory().addCreator(TutHelpPro-
vider::createInstance, "tut");
}

static HelpProvider* createInstance()
{
 FilePath fp(GetDocFileDir(""), "User", "tut");
 BufferString baseurl("file:///");
 baseurl.add(fp.fullPath()).add("/");

 fp.add("KeyLinkTable.txt");
 BufferString tablefnm = fp.fullPath();

 return new TutHelpProvider(baseurl.buf(), tablefnm.buf
());
}

};

- 19 -

The three key elements of this class are:

• The provider key: 'tut' in this case.

• The base URL: Here it is a local path inside the OpendTect installation. But it can
as well be a web URL like 'http://doc.opendtect.org/'

• The key-link table, which is read from a file 'KeyLinkTable.txt' here. But you can
also make it on-the-fly using the function addKeyLink. That is rather convenient if
you are doing it just for a couple of plugins.

Then in the UI you can use a HelpKey comprising of two parts: the provider key ('tut'
for example) and the key for the individual UI, like 'hor' in uiHorTools:

uiTutHorTools::uiTutHorTools(uiParent* p)
 : uiDialog(p, Setup(tr("Tut Horizon tools"),
 tr("Specify process parameters"),
 HelpKey("tut","hor")))

When the user clicks on the help button the HelpProvider will look for the link for the
corresponding key, append the link to the base URL and open the document

- 20 -

2.6 Installation and auto-loading
Once you have made your own plugin, you probably would like it to be loaded auto-
matically whenever OpendTect is started. OpendTect provides some facilities that
do just that.

2.6.1 Preparing a plugin for auto-load
#include "odplugin.h" is needed for the PluginInfo structure and the PI_
AUTO_INIT_xxx defines.

The GetxxxxPluginType() specifies when a plugin is loaded:

• PI_AUTO_INIT_EARLY : Plugin is loaded before construction
of main window

• PI_AUTO_INIT_LATE : Plugin is loaded after construction of
main window

The default is PI_AUTO_INIT_LATE, so you only have to define anything if the plu-
gin needs to be loaded early: then use mDefODPluginEarlyLoad(YourPlu-
ginName).

- 21 -

2.6.2 Installing plugins for auto-load
The auto-load tool of OpendTect looks for plugins to load in two places:

1) Where are the .ALO files stored? The two locations searched are (in this order):

• <userdir>/plugins/<platform_dir>

• <systemdir>/plugins/<platform_dir>

2) Where are the plugin libraries? Locations are:

• <userdir>/bin/<platform_dir>/[Release|Debug]

• <systemdir>/bin/<platform_dir>/[Release|Debug]

The <userdir> is determined as follows:

• If it is set, $OD_USER_PLUGIN_DIR

• Else, the user settings directory is used: ~/.od

On Windows, your 'Personal directory' is located at $HOME if this is defined. Other-
wise, $USERPROFILE is used. Also see the specific notes in the windows doc-
umentation.

- 22 -

2.6.3 Using .alo files
Auto Load files are simple text files that tell a program which plugins it is supposed
to load from the 'libs' directory. Since OpendTect contains multiple programs, each
program has its own set of .alo files '<program name>.*.alo', while the plugins can
be shared between multiple programs. OpendTect will scan for any file with this
naming convention. So od_main.john.alo is perfectly OK.

Since there are multiple vendors and/or plugin sets, each vendor can make his own
.alo files. od_main, for example, will look at any file named od_main.*.alo. For this
example, the default plugins are specified by od_main.base.alo, while dgb's plugins
are specified by od_main.dgb.alo. This way, each vendor can make his own .alo
files, without interfering with others.

A .alo file is nothing more then a simple list of plugins, without extensions. For
example, this could be in an od_main.base.alo file:

Annotations

Madagascar

uiMadagascar

CmdDriver

GMT

uiGMT

Note that for each platform, a specific .alo file must be created. Usually, they will be
the same, but some plugins might not be relevant or supported on all platforms.

The plugins in the .alo files are loaded in the order as specified in the file. The alo
files themselves are handled in alphabetical order.

- 23 -

2.7 Distributing your plugin
The publishing and distribution of OpendTect plugins is pretty straightforward. The
.alo files can be installed in the plugins/platform ($DTECT_APPL/plugins/$HDIR)
directory, while the actual plugins (the .DLL, .so or .dylib files) go in the normal bin
sub-directory.

On Unix, this means that you can make a tar.gz or zip file containing the plugins in a
directory structure as described above, which can be extracted into the existing
OpendTect installation directory.

On Windows this is also possible, but it is more common to use an auto-extracting
installer to do this. For more info on this, see the windows documentation.

If you want your plugins to be used around the world, then you may want to contact
support@dgbes.com to get your plugin(s) distributed via the OpendTect installation
Manager. Be prepared to have thedgbes.com people take a look at your code and
test the stability. Then make the packages along the lines described below. You'll
also have to provide information about yourself and the plugin - and a picture of a
certain size.

Preparing for the installation manager

The general structure of a package is explained in the following diagram:

- 24 -

It is important that you make the packages nicely modular. Even if you have only
two platforms yet, still it's a good idea to split the stuff in platform-independent and
platform-dependent stuff. And separate documentation. In that case there would be
4 packages:

• The platform-independent part (hidden for the user)

• Part for platform 1

• Part for platform 2

• Documentation

The user will see only two: the plugin itself and the documentation.

Then the naming of the packages. Let's not make a big specification document; you
can guess this by looking at what is now in the opendtect.txt file. Specifics:

• We will need a similar package definition file (<vendor>.txt). That is the sort of info
we need. Don't worry about the codes you see in there, just the basic info like
descriptions and dependencies. That would allow us to make this file. You can
deliver the whole file if you want to, but we can also maintain it.

• Provide an image for each package you deliver and one for your company
(vendor). The target size would be around 100x100 for the product logo and 16x16
for the vendor logo.

• Make sure every package contains a file: <OpendTect ver-
sion>/relinfo/ver.<package_name>[_plf].txt Like:

7.0.0/relinfo/ver.jimsinversion_lux64.txt

7.0.0/relinfo/ver.pppraytrace.txt

You can have your own version numbering, but it has to have this form:

number.number.number [optional_ free_ text_ without_ dots_ start-
ing_with_non_digit]

You are completely free in your numbering, and the optional text. The installer uses
the '>' operator for every part. The numbers have to be integer numbers, and will be
compared as integers.

https://download.opendtect.org/relman/defs/opendtect.txt

- 25 -

Users cannot update a package without also updating the packages that these are
dependent on. This circumvents the need to specify exactly the dependencies on
which versions on what other packages.

- 26 -

3 The Tutorial Plugin
3.1 Introduction
We have created the Tutorial plugins that you can find in your work environment. As
is common in OpendTect, there is a plugin 'Tut' for non-ui, real-work stuff, and the
'uiTut' for the GUI part.

The idea of the tutorial plugins is to show a variety of common things that one might
want to do, rather than make something useful for end-users. For that we'll make
the following tools:

• Manipulating some seismic data (read, process, write)

• The same, but now using an Attribute

• Do some work with horizons

• Do some work with wells

In the process, we'll see how to:

• Create menu items and toolbar icons

• Make right-click tree item menus

• Work in the OpenSceneGraph 'vis' world

• Work with DataPack's and create flat displays

- 27 -

3.2 uiTut plugin
In uiTut, the GUI consists of two parts. One deals with opening an independent dia-
log box via a menu item in the 'Utilities' menu. The other part gets the 'Tutorial' attrib-
ute listed in the 'Edit Attributes' dialog and creates the input fields in the same dialog
box. It also sends the input parameters to Tutorial for attribute computation

Let us first have a look at the independent dialog part which in turn has two parts --
one for seismic tools and the other for horizon tools. The only interesting part is the
uiIOObjSel class which allows you to select an item from a set -- a horizon or a
seismic cube (subclass uiSeisSel is used for seismic cube selection).

Both uiSeisTools and uiHorTools use the class uiTaskRunner, which trig-
gers the Executor's in the Tut plugin. The class uiTaskRunner also displays a pro-
gress bar which keeps the user informed about the progress of the process.

Now we come to the attribute part. In the uitutorialattrib.cc file we see that although
uiAttrDescEd is not a uiDialog like the the uiHorTools, it still is a valid parent
(being a uiGroup) for the various UI elements. A nice feature of OpendTect is clear
from the first line in the constructor: the inpfld is a special Attribute UI class which
is handled just like any pre-defined uiBase or uiTools class. This illustrates that
in the OpendTect GUI system, not only pre-made GUI elements are 'first class' -
new objects with different shape and behavior attached will be usable transparently
by any other GUI class.

Coming to the plugin 'main' file uitutpi.cc, like any typical UI plugin, uiTut is a LATE
plugin, which means that it will be loaded only after the rest of the UI is already in
place. Thus, you must not put mDefODPluginEarlyLoad().

Then comes the second 'special' plugin function GetxxxPluginInfo(). You may
want to refer to the definition of the class PluginInfo for a better understanding of the
above function. It allows the plugin manager to make this info available to the world.

mDefODPluginInfo(uiTut)
{
 DefineStaticLocalObject(PluginInfo, retpi,(
 "Tutorial plugin",
 "OpendTect",
 "dGB (Raman/Bert)",
 "3.2",
 "Shows some simple plugin development basics."
 "\nCan be loaded into od_main only." };

../../Generated/html/classuiTaskRunner.html

- 28 -

 return &retpi;
}

And the last 'special' function is the one which gets things going:

mDefODInitPlugin(uiTut)
{
 mDefineStaticLocalObject(PtrMan, theinst_, = 0);
 if (theinst_) return 0;
 theinst_ = new uiTutMgr(ODMainWin());
 if (!theinst_)
 return "Cannot instantiate Tutorial plugin";

 uiTutorialAttrib::initClass();
 TutHelpProvider::initClass();
 return 0;
}

- 29 -

3.3 Tut plugin
The responsibility of uiTut is limited to talking to the user and getting the input para-
meters. The real work is done behind the scene by the non-UI Tut plugin. And that is
the reason why it is of type EARLY. This particular plugin tells OpendTect's applic-
ation manager that it wants to be loaded early - i.e. before any build of tables, data
structures or user interfaces are made. That is typical of 'Real Work' plugins. The
alternatives are NONE (which is very uncommon) and LATE, which is typical for UI
plugins that want to start working when all objects have already been created. In this
case, we need to specify that we have an EARLY plugin:

mDefODPluginEarlyLoad(Tut)

- 30 -

3.4 SeisTools
Let us first look at the direct seismic operations, that are handled by the class
SeisTools, which in turn is a subclass of class Executor. 'Real work' is done by the
function nextStep() which is typical of class Executor. Here, three different oper-
ations are possible: Scaling, where you can multiply the data values by a certain
factor and apply a shift; Squaring, where, as the name suggests, you can take a
square of the data values; and Smoothening, where you can take the arithmetic
average of 3 or 5 samples depending on the filter strength. Traces are read one-by-
one by a SeisTrcReader and supplied to the function handleTrace() where
the actual computation is done. Then a SeisTrcWriter writes the output traces
one-by-one to the output cube.

int Tut::SeisTools::nextStep()
{
 if (!rdr_)
 return createReader() ? Executor::MoreToDo()
 : Executor::ErrorOccurred();

 int rv = rdr_->get(trcin_.info());
 if (rv < 0)

{ errmsg_ = rdr_->errMsg(); return Execut-
or::ErrorOccurred(); }
 else if (rv == 0)
 return Executor::Finished();
 else if (rv == 1)

{
 if (!rdr_->get(trcin_))

{ errmsg_ = rdr_->errMsg(); return Execut-
or::ErrorOccurred(); }

 trcout_ = trcin_;
 handleTrace();

 if (!wrr_ && !createWriter())
 return Executor::ErrorOccurred();
 if (!wrr_->put(trcout_))

{ errmsg_ = wrr_->errMsg(); return Execut-
or::ErrorOccurred(); }
 }

- 31 -

 return Executor::MoreToDo();
}

Scaling and squaring are single-sample operations. But as you can see in the imple-
mentation of the function handleTrace() below, smoothening involves multi-
sample computation. It requires separate input and output traces. Otherwise, if we
did the operation on the same trace, we would be taking the modified values of
samples preceding the current sample. For the sake of simplicity, we make a copy
of the input trace to store the output values. This is not a good practice as it results
in duplication of data. But since it is a tutorial, our aim is to keep the code as simple
as possible and leave the efficiency part for serious programming.

void Tut::SeisTools::handleTrace()
{
 switch (action_)

{

 case Scale: {
 SeisTrcPropChg stpc(trcout_);
 stpc.scale(factor_, shift_);
 } break;

 case Square: {
 for (int icomp=0; icomp < trcin_.nrComponents();
icomp++)

{
 for (int idx=0; idx < trcin_.size(); idx++)

{
 const float v = trcin_.get(idx, icomp);
 trcout_.set(idx, v*v, icomp);
 }
 }
 } break;

 case Smooth: {
 const int sgate = weaksmooth_ ? 3 : 5;
 const int sgate2 = sgate/2;
 for (int icomp=0; icomp < trcin_.nrComponents();
icomp++)

{
 for (int idx=0; idx < trcin_.size(); idx++)

{
 float sum = 0;

- 32 -

 int count = 0;
 for(int ismp=idx-sgate2; ismp <= idx+s-
gate2; ismp++)

{
 const float val = trcin_.get(ismp,
icomp);
 if (!mIsUdf(val))

{
 sum += val;
 count++;
 }
 }
 if (count)
 trcout_.set(idx, sum/count, icomp);
 }
 }
 } break;
}
nrdone_++;
}

- 33 -

3.5 HorTool
Similar to SeisTools, HorTool performs some simple operations on horizons:
thickness computation and smoothening. Each of these operations is handled by a
subclass of HorTool which is a subclass of Executor and as expected the com-
putation is performed by the function nextStep(). You may notice here that no
object of class HorTool is defined anywhere. It is only used as the base class for
classes ThicknessCalculator and HorSmoothener. Let us have a look at the
nextStep() function in class ThicknessCalculator to see how the data val-
ues are accessed in a Horizon3D:

int Tut::ThicknessCalculator::nextStep()
{
 if (!iter_->next(bid_))
 return Executor::Finished();

 int nrsect = horizon1_->nrSections();
 if (horizon2_->nrSections() < nrsect) nrsect = hori-
zon2_->nrSections();

 for (EM::SectionID isect=0; isectgetPos(isect, subid
).z;
 const float z2 = horizon2_->getPos(isect, subid
).z;

 float val = mUdf(float);
 if (!mIsUdf(z1) && !mIsUdf(z2))
 val = fabs(z2 - z1) * usrfac_;

 posid_.setSubID(subid);
 posid_.setSectionID(isect);
 horizon1_->auxdata.setAuxDataVal(dataidx_, posid_,
val);
 }

 nrdone_++;
 return Executor::MoreToDo();
}

- 34 -

Please note the difference in the function dataSaver in the two classes. In Thick-
nessCalculator, it saves the auxilary data, whereas in HorSmoothener, it
saves the geometry.

- 35 -

3.6 The Tutorial Attribute
We have seen the direct seismic approach to simple operations on seismic data in
SeisTools. For our purpose, it suits well. But the main problem with this approach is
the difficulty in multi-trace handling. Moreover, for large seismic volumes, handling
each trace one-by-one may slow down the process. This brings us to another
approach called Attributes. In this example, we define the Tutorial attribute to do
things once done by SeisTools. As we discuss different aspects of making an attrib-
ute, we will also discuss its advantages over the direct seismic approach.

The main plugin file "tutpi.cc" makes a call to Tutorial::initClass(). The
class Tutorial (tutorialattrib.h) is defined as a subclass of Attrib::Provider
class. Every attribute is a provider, each can thus be used as input for another attrib-
ute.

../../Generated/html/classAttrib_1_1Provider.html

- 36 -

3.7 Steering
A Steering cube, as the name suggests, works as a guiding cube. It stores the Inline
dip and Crossline dip at each point, which guides the attribute engine in multi-trace
computations. In case of our Tutorial attribute, we can use the steering data for hori-
zontal smoothening. The key function is initSteering() which makes the steer-
ing data available in the form of shifts relative to the central trace. To understand
how this shift is used during computation, please refer to the horizontal smoothen-
ing section in the function computeData().

Some fundamental attribute functions are listed here:

createInstance()

This function is standard for every attribute, here is the attribute constructor called.
Use the macro mAttrDefCreateInstance to define createInstance:

mAttrDefCreateInstance(Tutorial)

initClass()

This static function initializes the attribute: sets up the parameters and the number
and type of the inputs and outputs. You can compare this to what you see in
Opendtect in the attribute definition window after loading the uiTut plugin.

If you look at the parts of the implementation carefully, (tutorialattrib.cc) you'll see
that each parameter is built up following this example:

EnumParam* action = new EnumParam(actionStr());
 action->addEnum("Scale");
 action->addEnum("Square");
 action->addEnum("Smooth");
 desc->addParam(action);

Every parameter is required by default, to overrule this use setRequired(false)

initClass() also adds the attribute to the attribute factory. In this case, as every
attribute is a provider, the Tutorial attribute is added to PF() (the Attrib::Pro-
viderFactory singleton access function).

updateDesc()

../../Generated/html/classAttrib_1_1ProviderFactory.html
../../Generated/html/classAttrib_1_1ProviderFactory.html

- 37 -

Will be used not only to update the parameters but also the number and type of the
outputs and to add or disable some inputs. If you look at the implementation for the
tutorial attribute, this function just allows to enable or disable the inputs (factor, shift
and smooth) according to the action chosen by the user

getInputOutput()

we need to define this initialization function because we have Steering. Steering
always carries two outputs and we need them both.

initSteering()

If we are using steering data, this function prepares the steering input for use in com-
putation. A subvolume is generated around the central trace, with the size of the sub-
volume specified by the stepout. This data contains the shifts in terms of number of
samples for each trace in the subvolume relative to the central trace.

void Tutorial::initSteering()
{
 if (inputs[1] && inputs[1]->getDesc().isSteering())
 inputs[1]->initSteering(stepout_);
}

getInputData()

Before the work can be done, some input has to be given. This function is the place
where you specify how to get your input data. For the Tutorial this is the seismic
data. But it can also be Steering Data or any other attribute.

bool Tutorial::getInputData(const BinID& relpos, int zintv
)
{
 if (inpdata_.isEmpty())
 inpdata_ += 0;
 const DataHolder* data = inputs[0]->getData(relpos,
zintv);
 if (!data) return false;
 inpdata_.replace(0, data);

 if (action_ ==2 && horsmooth_)
{

 steeringdata_ = inputs[1] ? inputs[1]->getData(

- 38 -

relpos, zintv) : 0;
 const int maxlength = mMAX(stepout_.inl,
stepout_.crl)*2 + 1;
 while (inpdata_.size() < maxlength * maxlength)
 inpdata_ += 0;

 for (int idx=0; idxgetData(relpos + posand-
steeridx_.pos_[idx]);
 if (!data) continue;
 inpdata_.replace(posandsteeridx_.steeridx_
[idx], data);
 }
 }

 dataidx_ = getDataIndex(0);

 return true;

}

You will notice from here that the calculation of the attributes is not done on traces
but using a different object, the DataHolder. The dataholder contains a set of
ValueSeries which holds the value of every sample of the SeisTrc. Advantage:
in case of an attribute which has other attributes as inputs, data is available in the
corresponding dataholders, it thus saves a lot of time (easier and much faster to
read some floats in a ValueSeries than to get values from a SeisTrc). Stored
data are read from cubes of seismic traces and written the same way.

The DataHolder is also carrying some specific information about the trace to be
processed, like the start sample number and the number of samples you wish to cal-
culate.

Another important remark: calculation is made using sample numbers, not time or
depth

Most of the rest of the methods are there to comply with the Attrib::Provider
interface - see the Attrib::Provider documentation. The basic idea is that for
each sample of each trace one or more attribute values can be calculated. The num-
ber of attribute values (or outputs) is defined in the initClass() function. If your
input requires additional samples (timegate) or neighbouring traces (stepout), you
will have to define reqZMargin() and reqStepout() respectively.

computeData()

../../Generated/html/classValueSeries.html
../../Generated/html/classAttrib_1_1Provider.html

- 39 -

When we want to look at the actual work, the place to be is the computeData()
method. This is the place where you define the mathematics for calculating the
attribute. This function is called for each trace of your output cube.

In the computeData() method, we are faced with a number of Z ranges. To be
able to support multi-threading, computeData must be ready to only process part
of the trace. Then, also, we can have input cubes that are larger than requested or
desired, or smaller than that. This delivers a rather nasty picture of Z indexes that
we really cannot circumvent. To make things at least clear, the indexes are all
related to the the absolute Z=0. This is where everything refers to. Then, we have dif-
ferent start Z indexes for each of the input cubes and the output cube. These are
named 'z0_' in the corresponding DataHolders.

- 40 -

Let us have a look at the Tutorial::computeData function and compare it with
the code in SeisTools. The algorithm for actual computation is the same in both
the cases, but there is a marked difference in the manner in which seismic data is
accessed in each case.

bool Tutorial::computeData(const DataHolder& output, const
BinID& relpos,
 int z0, int nrsamples, int
threadid) const
{

- 41 -

 for (int idx=0; idx < nrsamples; idx++)
{

 float outval = 0;
 if (action_==0 || action_==1)

{
 const float trcval = getInputValue(*inputdata_,
dataidx_,
 idx, z0);
 outval =
action_==0 ? trcval * factor_ + shift_ :
 trcval * trcval;
 }
 else if (action_==2 && !horsmooth_)

{
 float sum = 0;
 int count = 0;
 for (int isamp=sampgate_.start; isamp <= samp-
gate_.stop; isamp++)

{
 const float curval = getInputValue(*in-
pdata_[0], dataidx_,
 idx + isamp, z0);
 if (!mIsUdf(curval)
)

{
 sum += curval;
 count ++;
 }
 }
 outval = sum / count;
 }
 else if (action_ == 2 && horsmooth_)

{
 float sum = 0;
 int count = 0;
 for (int posidx=0; posidx < inpdata_.size();
posidx++)

{
 if (!inpdata_[posidx]) continue;
 const float shift = steeringdata_ ?
 getInputValue(

- 42 -

*steeringdata_,posidx, idx, z0) : 0;
 const int sampidx = idx + (mIsUdf
(shift) ? 0 : mNINT(shift));
 if (sampidx < 0 || sampidx >= nrsamples)
continue;
 const float val = getInputValue(*inpdata_
[posidx],
 dataidx_, sampidx,
z0);
 if (!mIsUdf(val))

{
 sum += val;
 count ++;
 }
 }
 outval = sum / count;
 }

 setOutputValue(output, 0, idx, z0, outval);
 }

 return true;

}

- 43 -

4 Build OpendTect from source
4.1 Introduction

This section lays out a step by step setup of a standard build environment on Win-
dows 10/11, MacOS and Linux. Using a different setup might be possible, but prob-
ably requires extra work.

Requirements

A C++ compiler and compilation tool chain:

l Windows: msvc2022 64 bit (>= v17.3.1) or msvc2019 64 bit (>= v16.7.5). The
free community edition is sufficient.

l macOS: SDK 10.14

l Linux: gcc 64 bit version 5.4.0 or higher

CMake version 3.14 or higher

The c++14 version is enabled by default on all platforms.

Dependencies

To build the software you need to also download and install/build a few depend-
encies which probably are not installed in your system. The version of depend-
encies varies between the branches. The Qt dependencies are available in binary
installers, the others have to be built from source.

BRANCH DEPENDENCIES
main Qt 5.15.2, OpenSceneGraph 3.6.5, Proj 9.0.1 (optional), Sqlite 3.38

(optional), HDF5 1.12.2 (optional)
od7.0 Qt 5.15.2, OpenSceneGraph 3.6.5, Proj 9.0.1 (optional), Sqlite 3.38

(optional), HDF5 1.12.2 (optional)
od6.6_rel,
od6.6

Qt 5.15.2, OpenSceneGraph 3.6.5, HDF5 1.12.2 (optional)

od6.4.5,
od6.4

Qt 5.9.6, OpenSceneGraph 3.6.3

https://download.qt.io/archive/qt/5.15/5.15.2/
https://github.com/openscenegraph/OpenSceneGraph/archive/OpenSceneGraph-3.6.5.tar.gz
https://download.osgeo.org/proj/proj-9.0.1.tar.gz
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.hdfgroup.org/downloads/hdf5
https://download.qt.io/archive/qt/5.15/5.15.2/
https://github.com/openscenegraph/OpenSceneGraph/archive/OpenSceneGraph-3.6.5.tar.gz
https://download.osgeo.org/proj/proj-9.0.1.tar.gz
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.hdfgroup.org/downloads/hdf5
https://download.qt.io/archive/qt/5.15/5.15.2/
https://github.com/openscenegraph/OpenSceneGraph/archive/OpenSceneGraph-3.6.5.tar.gz
https://www.hdfgroup.org/downloads/hdf5
https://download.qt.io/archive/qt/5.9/5.9.6/
https://github.com/openscenegraph/OpenSceneGraph/archive/OpenSceneGraph-3.6.3.tar.gz

- 44 -

4.2 Setting up the environment
OpendTect source code
To build OpendTect from source you need to pull the source code from https://-
github.com/OpendTect/OpendTect. Then build the solution with CMake. In this
case launch CMake and browse to your OpendTect source folder and start con-
figuring and generating from CMake. CMake will prompt for Qt and OpenS-
ceneGraph directory location, select them from CMake itself and continue. Once the
projects and solution are generated you can start building OpendTect.

You can use the following git commands to clone the repositories to your local
machine.

git clone https://github.com/OpendTect/OpendTect.git - -
single-branch --branch main od

git clone https://github.com/OpendTect/OpendTect.git - -
single-branch --branch od7.0 od7.0

CMake
Download CMake from https://cmake.org/download/.

Qt
For the Qt install, Qt Online Installer is the easiest and recommended way. The fol-
lowing components must be selected depending on your build platform:

l Desktop msvc2019 64- bit (Windows), SDK 10.14 (macOS) or gcc 64 bit (Linux)

l QtWebEngine

l OpenSSL (optionally, but is required for using https URL to download and/or
using tools in network)

l Optionally source code or debug information files

For building the main, od7.0, od6.6_rel and od6.6 branch Qt 5.15.2 is required. For
branches od6.4.5 and od6.4 Qt 5.9.6 is required.

https://github.com/OpendTect/OpendTect
https://github.com/OpendTect/OpendTect
https://cmake.org/download/
https://www.qt.io/download-qt-installer

- 45 -

OSG
Get the OSG binaries here: https://objexx.com/OpenSceneGraph.html. The 3.6.5
release and/or debug version is needed for building the main, od7.0, od6.6_rel and
od6.6 branches of OpendTect. The 3.6.3 release and/or debug version is needed
for building the od6.4.5, od6.4 and od6.5 branches.

Configure using CMake, compile and install.

Proj (optional)
Configure using CMake, compile and install.

Sqlite (optional)
Retrieve from their download site or the OpendTect SDK.

HDF5 (optional)
Get HDF5 here: https://www.hdfgroup.org/downloads/hdf5. The link to HDF5
requires to provide the path to an existing HDF5 installation. All versions above
1.10.3 are supported, but using the current API 1.12 is preferred. Installation is best
done using their binary installations (on Windows especially), or from the package
manager on Linux. Windows developers however need to recompile the sources
since no debug binary libraries can be downloaded.

https://objexx.com/OpenSceneGraph.html
https://www.hdfgroup.org/downloads/hdf5

- 46 -

4.3 Building OpendTect
Windows
Run CMake and select the folders for the source code and where to build the bin-
aries (for example C:\dev\od for both).

Configure CMake. Select generator Visual Studio 16 2019 or Visual Studio 17 2022
and platform x64. Then set the following variables:

l QTDIR= set this to the Qt install path for the appropriate version of Qt for the
OpendTect version, e.g. C:\Qt\5.15.2\msvc2019_64

l OSG_DIR="OpenSceneGraph install path"

l PROJ_DIR="PROJ install location" or BUILD_PROJ=ON or OD_NO_PROJ=ON
to disable it

l SQLITE_DIR="SQLITE install location" (optional, but required by Proj)

l HDF5_ROOT="HDF5 install path" (optional)

Press configure. If it says configuring done, press the generate button to build the
solution files.

Start Visual Studio 2019 or Visual Studio 2022 and open the OpendTect build solu-
tion (OpendTect.sln file). Before starting the build it is a good idea to set od_main as
the Startup Project. Then start the build.

Linux
Configure CMake ensuring to set the following variables:

l QTDIR= set this to the Qt install path for the appropriate version of Qt for the
OpendTect version

- 47 -

l OSG_DIR="OpenSceneGraph install path"

l PROJ_DIR="PROJ install location" or BUILD_PROJ=ON or OD_NO_PROJ=ON
to disable it

l SQLITE_DIR="SQLITE install location" (optional, but required by Proj)

l HDF5_ROOT="HDF5 install path" (optional)

l OpenGL_GL_PREFERENCE=LEGACY

l ZLIB_INCLUDE_DIR= set this if not being found by CMake

l ZLIB_LIBRARY= set this if not being found by CMake

Run make in the toplevel folder (i.e. where this README.MD file is located)

- 48 -

5 Contributing to the Source
Code
5.1 Introduction
The repository contains a number of release branches and 2 development
branches. The current stable release branch is 7.0

The development branches are:

BRANCH DESCRIPTION

main

This is the bleeding edge where migration of OpendTect to new versions of its major
dependencies, Qt and OpenSceneGraph, is tested and major new functionality is
added.

od7.0

This is the main development branch for the next stable release series 7.0. No
major new features are currently being added to this branch as it is being prepared
for release.

Very short

OpendTect:

• Is in C++ and a tiny bit of C

• Uses CMake, which makes it easy to port across platforms

• Is built with design principles and strict separations of functionality

• Uses exclusively open source tools

• Can be extended using plugins

C++

https://github.com/OpendTect/OpendTect/tree/od7.0
https://github.com/OpendTect/OpendTect/tree/main
https://github.com/OpendTect/OpendTect/tree/od7.0

- 49 -

OpendTect is a C++-based environment. A couple of years ago, C++ was declared
dead by many as a result of the Java hype. In some areas, Java is indeed far better
suited. In our part of the world (geosciences, in particular geophysics-related), we
don't think Java can match the advantages of C++: Fast yet flexible, Low-level yet
supporting high-level OO constructs. And, we would be terrified having to program
without templates.

That doesn't mean that programming in C++ auto-magically delivers good software,
and neither that performance comes easy. Those are some of the things that can be
reached by a good design.

- 50 -

5.2 Design principles
There are many aspects of software that can be categorised as 'good'. These
include robustness, flexibility, high performance, compactness, maintainability,
understandability. Software engineering is all about making choices - every aspect
costs resources and there's always a limit to that. So, even if one tries to optimise all
'good' aspects, there will be different degrees of emphasis on each of them.

As OpendTect was developed in a research-minded environment, flexibility is a high
priority. The Object-Oriented toolkit delivers many tricks to make software more flex-
ible. Some of these tricks nowadays have labels - 'Design patterns' - like the ones in
the 'Design Patterns' book (Factories,Singletons,etc.). Many constructs in the soft-
ware are fit to match the problem though, always with a number of design principles
in mind:

• OCP Open/Closed: classes and modules should be open for extension, but closed
for modification.

• SRP Single responsibility: only one class or module does one thing well and com-
plete.

• LSP Substititutability: inheritance for interfaces makes classes substitutable.

• DIP Dependency inversion: depending on abstract base classes inverts depend-
encies from high-level on low-level into dependency on stable high-level abstrac-
tions.

• DIF Don't Implement the Future: All source code present should actually be used
now.

• NBS No BullShit: Create constructs if needed, not because they're cool or any-
thing.

The last two are, [cough] of our own making. DIF ensures that there are no large
amounts of unused code lying around to be maintained, NBS delivers a system that
is as simple as possible given the constraints.

You may also want to look at the design/coding rules described in Chapter 6.

- 51 -

5.3 Isolation of external services
When services from another package (Qt, OpenSceneGraph, ...) are used, there is
always an isolating layer - either a complete module or a class that uniquely uses
those services. For software engineers this is an obvious action were it only to
reduce the dependency problems.

There is however more to it. External services tend to be designed for much more
general purposes than what is needed by OpendTect. Furthermore, some services
that will be very important for us won't be available. And, we may not like the form in
which the services are presented; moreover, the data structures used in the
external package seldomly fit nicely with ours.

To overcome all this, and get a nice insulation at the same time, all external services
are embedded in service layers that:

• Do exactly what we need

• Don't expose the external package's header files

• Use data structures that are common in OpendTect

Isolation like this is present for a variety of subjects, from threads, sockets, file hand-
ling to User Interface building and Data loading.

- 52 -

5.4 Modules
5.4.1 Introduction
A group of classes that handle a certain area of our domain is what could be called a
module. Sometimes these modules have their own namespace, most often not
(sometimes because the code pre-dates good support of namespaces by gcc). In
any case, it does correspond with two physical directories in the source tree:
include/module_name and src/module_name. Thus earth model related classes go
in the EarthModel directories.

5.4.2 The separation
The separation of include and src is first of all a visibility issue. The include files can
be 'seen' by other modules, the src files not. Conceptually, the separation is roughly
interface versus implementation. Roughly, because small functions are often imple-
mented in the header file.

Another separation that is very important is between UI- and 'Real Work' modules.
No (direct) user interface work is done in the RW-modules. The amount of Real
Work in the UI modules is minimised. Within the user interface part, there is a sep-
aration between basic UI (Qt-based in OpendTect) and 3D visualistion (OpenS-
ceneGraph-based). Both types of user interface modules have a prefix: 'ui' and 'vis'
respectively.

Making all these modules as opposed to just dumping everything in one big dir-
ectory does have the effect that it becomes necessary to precisely know what's
dependent on what. That's exactly what's described in the data/ModDeps.od file.
This file is used by OpendTect to automatically load module libraries.

- 53 -

5.4.3 Real Work modules
First of all, there are the Basic, Algo and General modules. General depends on
Algo, which in turn depends on Basic. The separation is a bit arbitrary, and the idea
was that Basic would be tools also usable outside OpendTect. It's easy to find a
counterexample like survinfo which was placed there to provide other Basic classes
with good defaults.

In any case, Basic handles basic stuff like file- related, extra string utils, Ascii
keyword-value files, positions (coords, inline/crossline), our own 'string' class the
BufferString (not just a relict: it works better with C environments), sets: TypeSet,
ObjectSet and BufferStringSet, OS dependent things like threads, stream opening,
and a variety of basic algorithms.

Algo is for, well, Algorithmic stuff. General handles all sorts of things, like fast
dynamic large N-D arrays (ArrayND etc.), the CBVS format for volumestorage, the
IOObj, IOMan and other data store related classes, Translators enabling different
formats, transforms and a few more things.

The domain-specific modules like Well, EarthModel, Seis etc. will be recognized by
a geoscientist. There's also the Attribute and AttributeEngine, the seismic attribute
modules, and the engine that does the work.

- 54 -

5.4.4 UI modules
For most of the RW-modules, there is a UI counterpart. This is made possible by the
basic UI modules uiBase, uiTools and uiIo, the basic 3D visualisation module
visBase and the basic combined stuff in uiOSG. On top of everything is the UI applic-
ation logic in uiODMain.

The uiBase module is one of the two modules that access Qt services. Where
uiOSG specifically handles the bridge bewteen Qt and OpenSceneGraph, uiBase is
Qt only. These two are therefore isolation layers. uiBase's main task is to provide
access to Qt widgets and implement the dynamic layout concept. In short, the
OpendTect user interface was not painted with a paint tool, but rather programmed
by attaching elements to each other. See the uiBase class documentation.

The uiTools module depends on uiBase only. It provides some general UI elements
from the uiBase basic objects. Most notably, the uiGenInput class, providing gen-
eralised data input.

The uiIo module is intended mainly for object selection (in the data store).

The OpenSceneGraph- based visualisation services are made available in the
visBase layer. Based on that, visSurvey delivers OpendTect-specific functionality.

It all comes together in the uiODMain module. Being the top- level module it is
dependent on all other modules. To keep the amount of knowledge contained in this
module low, much of the functionality is obtained from the 'UI Part servers'. For
example, the uiSeisPartServer is the isolation class for all seismic-related user inter-
face work. The uiODApplMgr object is only coordinating the flow of information
between the various part servers.

- 55 -

5.5 Contributing
You can contribute to the enhancement of OpendTect either by:

• providing bug fixes or enhancements to the OpendTect source code following the
usual Github Fork-Pull Request process.

• or independently by developing and releasing open source plugins from your own
Github or equivalent repository. See the wmplugins repository as an example of this
approach.

An overview of the design principles and preferred coding style/practices employed
by dGB in the development of OpendTect are described in dGB's coding guide.

https://github.com/waynegm/OpendTect-Plugins

- 56 -

6 Principles and best practices
in OpendTect coding
6.1 Introduction
Software engineering is a game of trade-offs. Performance vs generality, flexibility
vs stability, priorities vs general goals, and so on, and so on. A good software engin-
eer weighs all pros and cons and comes up with (near-)optimal solutions, often try-
ing to get the best of everything. Of course, in fact, sometimes things can be
completely ignored (e.g. in dialog-UI's performance is seldomly an issue).

Goals

When creating and maintaining software code, invariably one wonders what choice
will come out optimally. To define 'optimal', we have to define the goals we want to
maximise. The most obvious is:

(1) Total time spent (man-hours)

Less obvious, but also very important is:

(2) Total programming pleasure

The issue is that we software developers have to 'live' in the code, for many hours
each day. Nothing is more dissatisfying than to have to go through code that looks
like crap, even though the code may be working. Not being able to find what you
need, is another issue. Too complex code, too. Finally, maybe an item not really fit-
ting in the list, but still:

(3) Team-readyness

If you find pleasure in typing 15-level '?'-statements - so be it. If your entire team
likes it there is no problem either. But chances are you will be crucified by your team
members when they have to do anything with your code.

- 57 -

6.2 Requirements
6.2.1 Nice and neat
Good code should look good. You have to find joy in making the things you deliver
look as good as (reasonably) possible, and as easy to understand as possible. Com-
pare these two class definitions:

class SizeKeeper
{
public:
 SizeKeeper() : sz_(0) {}

 int size() const { return sz_; }
 void setSize(int n) { sz_ = n; }

protected:

 int sz_;
};

and:

class X { public: X() : n(0) {}
protected: int n;
public: int N() const { return n; } void sn(int p) { n = p;
} };

The second class definition looks like crap, and is difficult to understand, especially
when you imagine the code where the class is used. Maybe the first definition isn't
that clear for everybody immediately at the start, but it's easy to see that once you
get used to the style, it will be easy and fun to work with this kind of code.

For this to work, a team must agree on a style. The style characteristics are chosen
so they match the requirements of esthetics/pleasure and time minimisation.

It may look like the second class definition has an advantage over the first in the
time spent creating it. Nothing is more true. Time in software development is spent
on many things, and actually typing the code is just a tiny component:

• Time spent typing

- 58 -

• Time spent thinking/designing/creating

• Time spent changing

• Time spent understanding

• Time spent reworking

• Time spent debugging

For most practical purposes, the influence of typing time on the total time spent can
be neglected.

That leads to an important principle:

Rule (1): Make your code look good right from the start.

Waiting for a clean-up stage is a serious mistake. Already during creation of the soft-
ware, from the very start, the effects of sloppy code will hit you where it hurts. Even if
you have to re-type sections 10 times, it is better to have the code really neat at all
times. Only then you can see that the re-working is necessary. The earlier you
detect that constructions are not intuitive, logical, and easy to understand the earlier
you detect that your code is actually bad.

- 59 -

6.2.2 Uniform
This is not a point to be taken lightly. Other teammembers will at some point have to
change your code, other teammembers will at some point have to debug your code.
Uniformity makes sure this is as easy as possible. Remember this: changing code
you haven't made yourself is never easy, so do everything you can to help your
team members. Moreover, changing code you've made some time ago is never
easy, so you're even doing it for yourself.

The implications are simple although a lot of programmers have a lot of problems
with it:

Rule (2): Make your code look just like all the other code.

Combining (1) and (2) could casually be described as: make sure all team members
feel at home in your code at all times.

6.2.3 Simple and Easy
Any complex process can be broken up into simple steps, any complex object can
be broken up into simple objects. Always consider yourself as publishing something
that needs to be read by others. Take them by the hand and make it easy to under-
stand what you are doing, and why you are doing it. Avoid repetitions, complex con-
structions or long lines. Make things compact if that will make things clearer, or
uncompact if needed.

The best code you will ever make will invariably look as if it has cost hardly any time
to make. Like good dancers make it look like there is no effort involved, an excellent
solution always looks simple, compact and easy to use.

- 60 -

6.3 Explicit Rules
6.3.1 Introduction
The way we do things in OpendTect is not a 100% fixed body of rules. Moreover, we
tend to say 'rather do this than that', or sometimes we change our point of view. Still,
we almost unanimously agree on almost every issue. To lower the time to discover
how we do things, next to going through lots of code, you can make use of the rules
that follow.

- 61 -

6.3.2 OO and general rules
• Try to avoid pure implementation inheritance. Inheritance of 'mainly interface' is
usually OK. In all cases, ask yourself whether there really is a 'isA' relation between
the classes. Prefer delegation in any doubt.

• Be very aware of dependency management. Avoid using services from classes
that were designed for something else. In doubt, split that class into the common
part and the part that you are not interested in.

• Anything adding to the complexity has to be justified. Don't use patterns or other
nifty tricks without a good reason. Certainly, there are often good reasons. Factories
for example are almost always there for a good reason. But, always ask yourself: is
it worth the extra effort? The simple alternative may not be as flexible, but do I really
need that extra flexibility?

• Do not implement anything that isn't used (yet). Don't go for 'complete classes' or
that kind of mumbo-jumbo. Figure out which methods are indispensible (like copy
constructors) and then add functions when they are needed. Things that seem to be
sure to be used tend to never be used, instead they add to the burden of the main-
tainer. Sometimes pre-cooked stuff is removed in a re-work without ever being
used. On the other hand, if you think something is needed later, you need to design
the interface in such a way that if necessary, it is not unnecessarily hard to add. 'Pre-
pare, don't implement'.

• Jokes and surprises are not funny. They may seem to you at the time but they are
not. A mildly ironic comment once a year should be enough.

- 62 -

6.3.3 C++ rules
• We do not use exceptions. Exceptions are the horror story of C++, try looking at
C++ report, November-December 1994, Tom Cargill: "Exception handling: A false
sense of security". There are more reasons, for example that you have to use a cer-
tain paradigm throughout: RAII (Not a bad principle but not always easy to do and
never enforcable). If you want to I can explain a lot of those reasons by e-mail. The
bottom line is: don't use exceptions. External software using exceptions must be isol-
ated with try { } catch (...) {}.

• We are not using all the STL stuff and the std::string class. This is not because we
don't like it, but more because we don't see the need. Using this is not a problem but
will not work well with the rest of the system so in general the classes are not used.
For external software try moving to our own classes as quickly as possible and
beware of problems with exceptions.

• All code must be const-correct except in specific areas where that would not give
any gain: there it's optional. Learn the subtleties of const in various places. Don't
cast away const unless you are certain about it, consider the possibility you need to
use 'mutable'. Caching variables etc. should always be declared mutable. In OD,
GUI classes and classes working with legacy stuff can be non-const correct. We do
make them const-aware, which means they smoothly work together with classes
that are const-correct.

• Operator overloading can be used very sparingly, in situations of simple classes
with absolutely trivial usage. In any doubt, don't use it. It does more harm (some-
times a lot more) than it returns benefit. Even the ubiquitous examples like matrix
calcutations are almost surely better made with good old-fashioned method calls.

• In cases that you don't know whether a language feature can be used, do not give
the feature the benefit of the doubt. You can always ask your team members first. A
C++ language feature should only be used if you can prove that it is useful, clear, fit-
ting in our style and not easily possible with other means.

• We increasingly try to use name spaces. In many places namespaces should have
been used and this is a legacy problem which we want to gradually get rid of.

• Do not pollute with things that are not C++, like M$-windows directives. If abso-
lutely unavoidable design a strategy to minimise the impact of these horrible things.

• Consider implementing in a header file only if unavoidable (templates), or:

- 63 -

• Is the implementation stable? If not, dependencies will trigger each time the imple-
mentation is changed.

• The implementation must be completely trivial or useful for a reader. In the latter
case, it replaces comments with something that is fundamentally up-to-date.

• The space taken may not be huge - then implement in the .cc file anyway.

- 64 -

6.4 Semantical/typographical rules
First of all: the naming of classes, variables, namespaces, etc. is extremely import-
ant. You want to optimise understandability and compactness, in doubt always go
for understandability. Naming should be as intuitive as possible. If you cannot find
an intuitive name, consider the possibility that your design is not right. Well
designed classes and methods hardly ever have non-intuitive names. If you are
really convinced you're right but still you can't find anything intuitive, make sure you
explain the meaning in comments.

• Classes and name spaces have a well-chosen name. Very well chosen. Do not
rest before you have a name that really suits the class well. Name spaces tend to
have short names, classes tend to be longer. If you cannot find a good name you
probably have to split up or redefine the class. Typographically, every syllable of the
class/namespace name starts with an upper case character.

• Class methods also need carefully designed names. First of all, we have adopted
the early Smalltalk rules: * First syllable: all lower case * further syllables: start with
upper case. Then, how the method is named is dependent on what it does. The rule
is that the resulting code must read as if it is English text, and that it does what it
says. most often verbNoun is OK. Bad are:

l bool moderator() - bool functions must be usable directly in 'if' or '?' statements.
Imagine 'if (moderator())'. Depending on what it does, consider 'isModer-
ator()' or 'moderate()'.

l void wordChanger() - a word changer could be an object but not a function. Con-
sider 'changeWord()' or 'changeWords()' or a re-design.

l int applesAndPears() - what does this thing do? Make sure there is at least one
verb.

• Variables are in lowercase. Class members should get an underscore at the end,
further variables should generally be free of underscores. Special cases are Keys,
'hard' constants and Notifier names. There is a namespace 'sKey' and there are
variables 'sKeyXxx' for key strings. Examples are 'sKey::Yes' and
'sKeyTraceLength'. Hard constants are like 'cMaxNrPatches'. Notifiers are
defined in Basic/callback.h.

• Macros are like constants but with prefix 'm': 'mErrRet(msg)'. As usual, inline
funtions, constants and templates are preferred but macros are still indispensible in
real C++.

- 65 -

6.5 Layout
No other subject brings up this many discussions. While it's simple: choose a policy
and stick to it. The end result is what counts: readability, compactness, under-
standability. Thus all rules can be broken if it really helps those properties, but they
rarely are.

• Indentation:

4 spaces per level, 8 spaces = one tab. Use tabs whenever possible, also inside a
line.

• Alignment:

The maximum number of characters on one line is 80. So when you exceed this
number, start on the new line with a couple of tabs. Align function arguments as
much as possible.

MyClass::functionWithLongName(const char* arg1,
const char* arg2) const

When implementing functions in header files, align the implementations.

getPtr () const { return ptr; }
getValue() const { return val; }

• Braces '{ }':

On a line by themselves.

if (b)
{
 stmt1 ();
 stmt2 ();
}

Single statements need not be braced.

- 66 -

if (b)
 stmt1();

Two or three small statements should not be packed on one line with braces.
Although that this is good for readability, it should be avoided due to that it is not
good for debugging.

if (b)
{ stmt(); return; }

• Parentheses:

Pad with a space on both sides, for outer parentheses.
For inner parentheses, no spaces should be provided.
When using tr("<STRING>"), no spaces should be used.

if (x)
if ((x && y) || (z1 && z2))

• Array brackets:

No space between array and first bracket. Pad index if that makes things more
clear.

x = arr[0];

• Equality-type operators:

Pad with spaces, unless it really helps seeing the grouping.

if (a == b)
x = 15;

If more clear, use:

if (c<d && e>f)

rather than:

- 67 -

if (c < d && e > f)

• Semicolons:

Attach to last character of statement:

doIt ();
for (int idx=0; idx<10; idx++)

• '?'-statements:

Use only and always if the same thing must be done or used depending on a con-
dition:

return isOK () ? 10 : 20;
x = a > 10 ? 10 : a;
prTxt(isOK() ? "Yes" : "No");

• Class declarations:

Just look at examples, but a nice template may be:

class Y;
class Z;

namespace X
{

class A : public B
{
public:
 A (const C& c)
 : B (c)
 , var_ (0) {}

 enum Type { T1, T2 };
 void setType (Type);

 bool isNice () const { return
true; }
 bool isOK(float) const:

- 68 -

 //!< will not handle values < 0
well!

 void doIt (int base_ count,const Y&);

protected:

 float var_;

private:

 void init ();
 friend class Z;

};

Remarks:

l The tab alignment can be 2, 3 or 4 tabs, dependent on the length of things.
l functions implemented immediately get a normal space padding for the arguments.
Functions only declared get no padding for the arguments. Put variable names only if it
adds to the understanding.

l Comments can help but can also make things a mess. Use them sparingly, only to
clearly specify what a method does, or to indicate pre-conditions etc.

- 69 -

6.6 Adapting code
From now on, new code will be as described above. What to do if the code you're
changing is not good according to these standards? That depends on the amount of
work vs the amount of time vs the importance of the deviation.

The rules are:

• Make sure the code is, after you're done with it, 'internally consistent'. For
example, when adding a member to a class with already 20 members without an
underscore you will likely add a member without an underscore, rather than chan-
ging all the other members. In no case make your new member the only one with an
underscore. That is even more confusing to the reader of the .cc code.

• If you doubt whether to re-do parts, give changing it the benefit of the doubt unless
it's really horribly dangerous to do so. But the rule is: In doubt => Change.

• Functions or members that seem to be unused but non-trivial: always try removing
them or flagging them with messages (e.g. copy constructors and the like will be
made by the compiler after you remove them and then you still don't know whether
they are used). An unused non-trivial fuction must be considered 'unbearable' (see
next item).

• Some things are 'unbearable'. Unbearably bad naming. Spaces instead of tabs.
Unused code. Replace this kind of stuff where you see it. If these things happen too
much, consider asking the producer of the crap to remove it him/herself.

- 70 -

7 Class Documentation and
other resources

l OpendTect Class Documentation
l OpendTect developers Google Group
l dgbpy framework documentation
l odpy framework documentation
l OpendTect Machine Learning Developers Discord Community

../Generated/html/annotated.html
https://dgbes.com/support/faq-developers-google-group
https://doc.opendtect.org/7.0.0/doc/dgbpy/index.html
https://doc.opendtect.org/7.0.0/doc/odpy/index.html
https://discord.gg/9cVrW2sNza

- 71 -

Glossary
C

Closed Source
Software that is released in binary form only. The commercial plugins to
OpendTect are released as closed source extensions. Such extensions are only
permitted if OpendTect is run under a commercial (or academic) license agree-
ment.

G

GPL License
Gnu General Public License (http://www.gnu.org/licenses/gpl.html) is an open
source license under which OpendTect can be run. The license allows redis-
tribution of (modified) source code under the same licensing conditions (copy left
principle). It is not allowed to combine the open source part with closed source plu-
gins, which is why OpendTect is also licensed under a commercial license agree-
ment and under an Academic license agreement.

O

Open Source
Software that is released with its source code. OpendTect is released as open
source product that can be extended with closed source plugins. Such extensions
are only permitted if OpendTect is run under a commercial (or academic) license
agreement.

	OpendTect Programmer's Manual - 7.0
	Table of Contents
	1 Preface
	1.1 About this Manual
	1.2 Release Notes
	1.3 About OpendTect
	1.4 Copyright
	1.5 Acknowledgements

	2 Build a standalone plugin
	2.1 Introduction to building a stand alone plugin
	2.2 Setting up the Environment
	2.3 Building the Tutorial Plugin
	2.4 Debugging your plugin
	2.5 Creating the Help documentation
	2.6 Installation and auto-loading
	2.6.1 Preparing a plugin for auto-load
	2.6.2 Installing plugins for auto-load
	2.6.3 Using .alo files

	2.7 Distributing your plugin

	3 The Tutorial Plugin
	3.1 Introduction
	3.2 uiTut plugin
	3.3 Tut plugin
	3.4 SeisTools
	3.5 HorTool
	3.6 The Tutorial Attribute
	3.7 Steering

	4 Build OpendTect from source
	4.1 Introduction
	4.2 Setting up the environment
	OpendTect source code
	CMake
	Qt
	OSG
	Proj (optional)
	Sqlite (optional)
	HDF5 (optional)

	4.3 Building OpendTect
	Windows
	Linux

	5 Contributing to the Source Code
	5.1 Introduction
	5.2 Design principles
	5.3 Isolation of external services
	5.4 Modules
	5.4.1 Introduction
	5.4.2 The separation
	5.4.3 Real Work modules
	5.4.4 UI modules

	5.5 Contributing

	6 Principles and best practices in OpendTect coding
	6.1 Introduction
	6.2 Requirements
	6.2.1 Nice and neat
	6.2.2 Uniform
	6.2.3 Simple and Easy

	6.3 Explicit Rules
	6.3.1 Introduction
	6.3.2 OO and general rules
	6.3.3 C++ rules

	6.4 Semantical/typographical rules
	6.5 Layout
	6.6 Adapting code

	7 Class Documentation and other resources
	Glossary

